
1

Designing and Writing
Secure Application Code

John Mitchell

General topics in this course

uVulnerabilities
• How criminals break into things

– Circumvent security mechanisms (e.g., dictionary attack)
– Use code for purpose it was not intended (buffer overflow)

uDefensive programming
• Build all software with security in mind
• Make sure video game is not a boot loader

uSecurity Mechanisms
• Authentication
• Access control
• Network protocols

This
lecture

Before you start building …

uWhat are the security requirements?
• Confidentiality (secrets remain secret)
• Integrity (meaning preserved)
• Availability
• Accountability

uWhat threats are possible?
uWho do you trust / not trust?

Security = preserve properties against attack

10 Platitudes [Viega and McGraw]

• Secure the weakest link
• Practice defense in depth
• Fail securely
• Follow the principle of least privilege
• Compartmentalize
• Keep it simple
• Promote privacy
• Remember that hiding is hard
• Be reluctant to trust
• Use your community resources

Secure the weakest link

uThink about possible attacks
• How would someone try to attack this?
• What would they want to accomplish?

uFind weakest link(s)
• Crypto library is probably pretty good
• Is there a way to work around crypto?

– Data stored in encrypted form; where is key stored?

uMain point
• Do security analysis of the whole system
• Spend your time where it matters

Defense in Depth / Fail securely

uFailure is unavoidable – plan for it
uHave a series of defenses

• If an error not caught by one, caught by another

uExamples
• Firewall + network intrusion detection
• SSH + Tripwire

Be Reluctant to Trust
uClients, servers should not trust each other

• Both can get hacked

uTrusted code should not call untrusted code

2

Principle of least privilege

uGive only the minimum privilege
• Needed for the task, For minimum amount of time

uCompartmentalize
• Minimize damage possible from one module

uExamples
• Sendmail runs as root

– Root privilege needed to bind port 25
– No longer needed after port bind established

• But most systems keep running as root
• Also need root privileges to write to user mailboxes

• Will look at qmail for better security design

Keep It Simple

uUse standard, tested components
• Don’t implement your own cryptography

uDon’t add unnecessary features
• Extra functionality ⇒ more ways to attack

uUse simple algorithms that are easy to verify
• A trick that may save a few instructions may

– Make it harder to get the code right
– Make it harder to modify and maintain code

Promote Privacy

uDiscard information when no longer needed
• No one can attack system to get information

uExamples
• Don’t keep log of old session keys
• Delete firewall logs
• Don’t run unnecessary services (fingerd)

Remember that hiding secrets is hard

uInformation in compiled binaries can be found
uInsider attacks are common

• Companies spend time/money on firewalls
• Firewalls do not protect against inside attack

uSecurity by obscurity doesn’t work!!!

Use Your Community Resources

uConsult experts
uAllow public review
uUse software, designs that other have used

Example: Mail Transport Agents

uSendmail
• Complicated system
• Source of many vulnerabilities

uQmail
• Simpler system designed with security in mind
• Gaining popularity

Qmail written by Dan Bernstein, starting 1995
$500 reward for successful attack; no one has collected

3

Recent Sendmail Vulnerability

Sent: Tuesday, March 04, 2003 1:12 PM
To: unix-info@lists.Stanford.EDU
Subject: Stanford ITSS Security Alert: sendmail Header
Processing Vulnerability

sendmail is the most popular Mail Transfer Agent (MTA)
program in use on the Internet, …

sendmail contains an error in one of the security checks it
employs on addresses in its headers, which may allow an
attacker to execute malicious code within the sendmail security
context, usually root…

All users of sendmail should patch immediately …

Simplified Mail Transactions

mbox mbox

Mail User
Agent

Mail
Delivery
Agent

Mail
Delivery
Agent

Mail
Transport

Agent

Mail
Transport

Agent

Mail User
Agent

uMessage composed using an MUA
uMUA gives message to MTA for delivery

• If local, the MTA gives it to the local MDA
• If remote, transfer to another MTA

Example: qmail

uCompartmentalize
• Nine separate modules
• Each runs under different non-privileged UID:

qmaild, qmailr, qmailq, ... (except one as root)
• If one module compromised, others not

– SMTP server qmail-smtpd runs as user qmailr
– Rest of the system runs as other users

Example: qmail

uLeast privilege
• Each module uses least privileges necessary
• Only one setuid program

– setuid to one of the other qmail user IDs, not root
– No setuid root binaries

• Only one run as root
– Spawns the local delivery program under the UID and

GID of the user being delivered to
– No delivery to root
– Always changes effective uid to recipient before running

user-specified program

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue

root

setuid

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue

Incoming SMTP mail Other incoming mail

4

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue
u Splits mail msg into 3 files

• Message contents
• 2 copies of header, etc.

u Signals qmail-send

Structure of qmail

qmail-smtpd

qmail-localqmail-remote

qmail-lspawnqmail-rspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue
u qmail-send signals

• qmail-lspawn if local
• qmail-remote if remote

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue

u qmail-lspawn
• Spawns qmail-local
• qmail-local runs with ID of

user receiving local mail

Structure of qmail

qmail-smtpd

qmail-local

qmail-lspawn

qmail-cleanqmail-send

qmail-inject

qmail-queue

u qmail-local
• Handles alias expansion
• Delivers local mail
• Calls qmail-queue if needed

Structure of qmail

qmail-smtpd

qmail-remote

qmail-rspawn

qmail-send

qmail-inject

qmail-queue

u qmail-remote
• Delivers message to remote MTA

Principles, sendmail vs qmail

uDo as little as possible in setuid programs
• Of 20 recent sendmail security holes, 11 worked

only because the entire sendmail system is setuid
• Only qmail-queue is setuid

– Its only function is add a new message to the queue

uDo as little as possible as root
• The entire sendmail system runs as root

– operating system protection has no effect

• Only qmail-start and qmail-lspawn run as root.

5

Principles, sendmail vs qmail

uPrograms and files are not addresses
• sendmail treats programs and files as addresses

– “sendmail goes through horrendous contortions trying to
keep track of whether a local user was responsible for an
address. This has proven to be an unmitigated disaster”

(DJB)

• qmail programs and files are not addresses
– “The local delivery agent, qmail-local, can run programs

or write to files as directed by ~user/.qmail, but it's
always running as that user. Security impact: .qmail, like
.cshrc and .exrc and various other files, means that
anyone who can write arbitrary files as a user can
execute arbitrary programs as that user. That's it.”

(DJB)

Keep it simple

uParsing
• Limited parsing of strings

– Minimizes risk of security holes from configuration errors

uLibraries
• Avoid standard C library, stdio

– “Write bug-free code” (DJB)

uDon’t repeat functionality
• One simple mechanism handles forwarding,

aliasing, and mailing lists (instead of 3)
• Single delivery mode instead of a selection

Keep it simple

127209235127208467778exim-1.90

151170111224614062331smail-3.2

227142362420552457595zmailer-2.2e10

53121811617960852830sendmail-8.8.8

2883701234433116028qmail-1.01

Files CharsWordsLines

Secure Implemention

uGeneralities apply to design, implementation
• Example: defense in depth within code

– Check privileges several times
– Helps if code is modified
– Also can be useful if there is a race condition …

uOnce you have a design, implement carefully
• Keep security issues in mind
• Some tools can help

General categories [Wheeler]

• Avoid buffer overflow
• Secure software design
• Language-specific problems
• Application-specific issues

Program Component

Validate input Respond
judiciously

Call other code
carefully

See Wheeler’s book on web

Tools for producing secure code

uC vs type safe languages
• Buffer overflows are array bounds violations
• Java, ML, … check array bounds, prevent overflow

uPurify
• Find memory errors on the heap

uPerl tainting
• Track use of untrusted input

uAutomated code analysis tools
• Can catch many kinds of errors

6

Purify

uGoal
• Instrument a program to detect run-time memory

errors (out-of-bounds, use-before-init) and
memory leaks

uTechnique
• Works on relocatable object code

– Link to modified malloc that provides tracking tables

• Memory access errors: insert instruction sequence
before each load and store instruction

• Memory leaks: GC algorithm

Perl tainting

uRun-time checking of Perl code
• Perl used for CGI scripts, security sensitive
• Taint checking stops some potentially unsafe calls

uTainted strings
• User input, Values derived from user input
• Except result of matching against untainted string

uProhibited calls
• print $form_data{"email"} . "\n";

– OK since print is safe (???)

• system("mail " . $form_data{"email"});
– Flagged system call with user input as argument

Safe Perl mail command (?)

uCheck email string against pattern and parse
$email = $form_data{"email"};
if ($email =~ /(\w{1}[\w-.]*)\@([\w-.]+)/) {

$email = "$1\@$2";
} else { warn ("TAINTED DATA SENT BY …");

$email = ""; # successful match did not occur }

uWhat does this accomplish?
• Only send email to address that “looks good”
• Programmer responsible for “good” pattern
• Perl cannot guarantee that email addr is OK

Automated code analysis for C

uExample tool
• Ken Ashcraft and Dawson Engler, Using

Programmer-Written Compiler Extensions to Catch
Security Holes, IEEE Security and Privacy 2002

• Used modified compiler to find over 100 security
holes in Linux and BSD

• http://www.stanford.edu/~engler/

uBenefit
• Capture recommended practices, known to

experts, in tool available to all

Checking secure software

uMany rules for writing secure code
• “sanitize user input before using it”
• “check permissions before doing operation X”

uHow to find errors?
• Formal verification

+ rigorous
– costly, expensive. *Very* rare to do for software

• Testing:
+ simple, few false positives
– requires running code: doesn’t scale & can be impractical

• Manual inspection
+ flexible
– erratic & doesn’t scale well.

• What to do??

Metacompilation (MC)

uAnalyze compiler data structure to check code
• Extensions dynamically linked into GNU gcc compiler
• Applied down all paths in input program source
• E.g., extension to check user input

copy_from_user(&frame)
se401_newfram(…, frame)
se401->frame[frame] =…
return ret;

Linux
2.4.5:
drivers/
usb/
see401.c

GNU compiler
“unsafe use
of frame!”checker

Actual error in Linux: raid5 driver disables interrupts, and then if it fails to allocate buffer,
returns with them disabled. This kernel deadlock is actually hidden by an immediate
segmentation fault since the callers dereference the pointer without checking for NULL

7

Sanitize integers before use

Linux: 125 errors, 24 false; BSD: 12 errors, 4 false

array[v]
while(i < v)

…

v.clean Use(v)v.tainted

Syscall
param

Network
packet

copyin(&v, p, len)

any<= v <= any

memcpy(p, q, v)
copyin(p,q,v)
copyout(p,q,v)

ERROR

Warn when unchecked integers from untrusted
sources reach trusting sinks

Example security holes

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn_ctrl cmd;
...
while ((skb = skb_dequeue(&card->rcvq))) {

msg = skb->data;
...
memcpy(cmd.parm.setup.phone,

msg->msg.connect_ind.addr.num,
msg->msg.connect_ind.addr.len - 1);

uRemote exploit, no checks

Example security holes

/* 2.4.5/drivers/char/drm/i810_dma.c */
if(copy_from_user(&d, arg, sizeof(arg)))

return –EFAULT;
if(d.idx > dma->buf_count)

return –EINVAL;
buf = dma->buflist[d.idx];
Copy_from_user(buf_priv->virtual, d.address, d.used);

uMissed lower-bound check:

User-pointer inference

uProblem: which are the user pointers?
• Hard to determine by dataflow analysis
• Easy to tell if kernel believes pointer is from user!

uBelief inference
• “*p” implies safe kernel pointer
• “copyin(p)/copyout(p)” implies dangerous user ptr
• Error: pointer p has both beliefs.

uImplementation: 2 pass checker
inter-procedural: compute all tainted pointers
local pass to check that they are not dereferenced

Results for BSD and Linux

uAll bugs released to implementers; most serious fixed

Gain control of system 18 15 3 3
Corrupt memory 43 17 2 2
Read arbitrary memory 19 14 7 7
Denial of service 17 5 0 0
Minor 28 1 0 0
Total 125 52 12 12

Linux BSD
Violation Bug Fixed Bug Fixed Local bugs 109 12

Global bugs 16 0
Bugs from inferred ints 12 0
False positives 24 4
Number of checks ~3500 594

Linux BSD

8

Conclusions

uSecurity takes extra effort
• Know your security goals
• Design with security in mind

– Compartmentalize, least privilege
– Minimize setuid, root

• Implement carefully
– Keep it simple
– Think about attacks; secure the weakest link

• Use tools that detect common coding problems
– There are also tools that can analyze designs, but that’s

another story (harder to use, current research)

